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1 Introduction

The qualitative and quantitative investigation of parameter dependent systems is ubiquitous
in science and engineering. The wide spread desire to treat uncertainty leads to the need
to treat distributions of parameters in diverse applications ranging from classical physio-
logically based pharmacokinetics (PBPK) models [6], [21], [36] to social networks (e.g., the
diffusion of ideas in populations [16]) to random effects and mixing distributions in statistical
modeling [22], [28], [29], [30]. A powerful tool for the investigation of parameter dependency
is the sensitivity matrix. Equations for the sensitivity of a system with respect to vector pa-
rameters are used in optimization and inverse problems (least squares, maximum likelihood,
standard errors in statistics-[23]), model discrimination/model selection (dispersion matrix,
Fisher information matrix-[19]), as well as applications in biology [17], mechanics [1], [26],
and control theory [40]. The large literature includes a number of books devoted to both
elementary and advanced aspects of sensitivity [20], [24], [25], [26], [34], [40].

With the recently growing interest in incorporating uncertainty into models and systems,
the need to employ dynamics with probabilistic structures has received increased empha-
sis. In particular, systems with probability measures embedded in the dynamics (problems
involving aggregate dynamics as discussed in [6]) have become important in applications in
biology [3], [5], [6], electromagnetics [7] and hysteretic [10], [11], [18], [27], [31] and polymeric
[12], [13], [14] materials. These systems have the form

ẋ(t) = F(t, x(t), P ),

where P is a probability distribution or measure. In fact such systems are not new and arise
in relaxed or chattering control problems [32], [33], [35], [37], [38], [39] wherein the controls
are probability measures. Indeed, such systems date back to the seminal work of L.C. Young
on generalized curves in the calculus of variations [41], [42].

In [3], Banks and Bortz consider systems which depend on parameterized probability
measures P = P (ν, σ2) and develop a framework for sensitivities with respect to the mean
ν and variance σ2 in the context of delay differential systems for HIV. Here we present a
theory treating general Banach space parameters which include a general class of probability
densities. The example we discuss entails a non-parametric density version of the HIV
example treated in [3].

Specifically, we study the sensitivity equation of the ordinary differential equation

ẋ(t) = f(t, x(t), µ), t ≥ t0

x(t0) = x0, (1)

where f : R+×X×M→ X and X and M are complex Banach spaces. We wish to show for
the parameter µ in a Banach space M, the Frechet derivative of the solution x with respect
to µ, ∂

∂µ
x(t, t0, x0, µ) = y(t), exists and satisfies the equation

ẏ(t) = fx(t, x(t, t0, x0, µ), µ)y(t) + fµ(t, x(t, t0, x0, µ), µ), t ≥ t0

y(t0) = 0. (2)
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Here we define the notation that is used throughout this paper. Let X and M be two
complex Banach spaces and for x ∈ X, µ ∈M, we denote by |x|, |µ|, the norm of x and the
norm of µ, respectively. The space of bounded linear operators from X onto Y is denoted by
B(X,Y ). We let C[A, B] represent the class of continuous functions from set A into set B.
For a function f : R+×X×M→ X, the Frechet derivatives with respect to x and µ, if they
exist, are represented by fx(t, x, µ) and fµ(t, x, µ) and belong to B(X, X) and B(M, X),
respectively.

2 Theory

Consider the abstract differential equation (1) where f : R+ ×X ×M→ X is a continuous
mapping; it is clear that for t ≥ t0, a solution x(t, t0, x0, µ) of (1) satisfies the integral
equation

x(t, t0, x0, µ) = x0 +

∫ t

t0

f(s, x(s, t0, x0, µ), µ) ds t ≥ t0. (3)

In order to study the sensitivity of solutions of (1), we first need to show the solution of
(1) exists and is unique (see Lemma 1). The idea of the proof in Lemma 1 follows from
the standard ODE arguments using successive approximations. Therefore, we define the
successive approximations for system (1) to be the functions, x0, x1, ..., given recursively by

x0(t, t0, x0, µ) = x0,

xk+1(t, t0, x0, µ) = x0 +

∫ t

t0

f(s, xk(s, t0, x0, µ), µ) ds t ≥ t0, (4)

for k = 0, 1, 2, ....

Lemma 1 (Existence and Uniqueness of Solutions) If f : R+ ×X ×M→ X is continuous
and ∣∣∣f(t, x1, µ)− f(t, x2, µ)

∣∣∣ ≤ C
∣∣∣x1 − x2

∣∣∣ (5)

for some constant C > 0. Then the successive approximations xk converge uniformly for
t ∈ [t0, T ] to a unique solution x of (1) such that x(t0, t0, x0, µ) = x0.

Proof: For a given interval I = [t0, T ] where t ∈ I and a fixed µ, we denote M > 0 such that
|f(t, x0, µ)| ≤ M for all t ∈ I. Consequently, we have∣∣∣x1(t, t0, x0, µ)− x0

∣∣∣ ≤ M(t− t0). (6)

In order to establish the convergence of the successive approximations, let us define

Λk(t, t0, x0, µ) =
∣∣∣xk+1(t, t0, x0, µ)− xk(t, t0, x0, µ)

∣∣∣.
3



Then,

Λk(t, t0, x0, µ) =

∣∣∣∣∫ t

t0

f(s, xk(s, t0, x0, µ), µ)− f(s, xk−1(s, t0, x0, µ), µ) ds

∣∣∣∣
≤

∫ t

t0

∣∣∣f(s, xk(s, t0, x0, µ), µ)− f(s, xk−1(s, t0, x0, µ), µ)
∣∣∣ ds

≤
∫ t

t0

C
∣∣∣xk(s, t0, x0, µ)− xk−1(s, t0, x0, µ)

∣∣∣ ds,

and hence

Λk(t, t0, x0, µ) ≤ C

∫ t

t0

Λk−1(s, t0, x0, µ) ds, (7)

where C > 0 is the Lipschitz constant of (5).
Now we claim

Λk(t, t0, x0, µ) ≤ MCk(t− t0)
k+1

(k + 1)!
. (8)

For k = 0, we have

Λ0(t, t0, x0, µ) =
∣∣∣x1(t, t0, x0, µ)− x0

∣∣∣ ≤ M(t− t0)

from equation (6). Following by an induction on (7), we have

Λk+1(t, t0, x0, µ) ≤ C

∫ t

t0

Λk(s, t0, x0, µ) ds

≤ C

∫ t

t0

MCk (s− t0)
k+1

(k + 1)!
ds

≤ MCk+1 (t− t0)
k+2

(k + 2)!
.

Thus, we have the inequality in equation (8) holds for all k and obviously that the series∑∞
k=0 Λk(t, t0, x0, µ) is dominated by the power series for MeC(t−t0)

C
. Hence, by the comparison

test the series
∑∞

k=0 Λk(t, t0, x0, µ) is uniformly convergent on I. It follows that the series

x0 +
∞∑

k=0

(xk+1(t, t0, x0, µ)− xk(t, t0, x0, µ))

converges uniformly and absolutely on I. Consequently, the partial sum

xn(t, t0, x0, µ) = x0 +
n−1∑
k=0

(xk+1(t, t0, x0, µ)− xk(t, t0, x0, µ))
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converges uniformly to a continuous function x on [t0, T ]. With the existence of x on [t0, T ],
we have f(t, x(t, t0, x0, µ), µ) exists for t ∈ [t0, T ]. Since xk(s, t0, x0, µ) converges uniformly
to x(s, t0, x0, µ) and x → f(s, x, µ) is continuous, we pass to the limit in

xk+1(t, t0, x0, µ) = x0 +

∫ t

t0

f(s, xk(s, t0, x0, µ), µ) ds,

and obtain

x(t, t0, x0, µ) = x0 +

∫ t

t0

f(s, x(s, t0, x0, µ), µ) ds.

To show uniqueness of the solution, we assume there exist two solutions to (1), x1(t, t0, x0, µ)
and x2(t, t0, x0, µ). Then∣∣∣x1(t, t0, x0, µ)− x2(t, t0, x0, µ)

∣∣∣ =

∣∣∣∣∫ t

t0

f(s, x1(s, t0, x0, µ), µ)− f(s, x2(s, t0, x0, µ), µ) ds

∣∣∣∣
≤

∫ t

t0

∣∣∣f(s, x1(s, t0, x0, µ), µ)− f(s, x2(s, t0, x0, µ), µ)
∣∣∣ ds

≤
∫ t

t0

C
∣∣∣x1(s, t0, x0, µ)− x2(s, t0, x0, µ)

∣∣∣ ds.

It follows from Gronwall’s inequality that∣∣∣x1(t, t0, x0, µ)− x2(t, t0, x0, µ)
∣∣∣ ≤ 0 eC(t−t0) (9)

= 0.

Thus x1(t, t0, x0, µ) = x2(t, t0, x0, µ) and this completes the proof.

Lemma 2 (Continuous Dependence of Solutions on Parameters) Let f ∈ C[R+×X×M, X]
and for µ = µ0, let x(t, t0, x0, µ0) be a solution of

ẋ = f(t, x, µ0), x(t0) = x0, (10)

existing on [t0, T ]. Assume further that

lim
µ→µ0

f(t, x, µ) = f(t, x, µ0), (11)

uniformly in (t, x) and for (t, x1, µ), (t, x2, µ) ∈ R+ ×X ×M,∣∣∣f(t, x1, µ)− f(t, x2, µ)
∣∣∣ ≤ C

∣∣∣x1 − x2

∣∣∣ (12)

for some constant C > 0. Then the differential system

ẋ = f(t, x, µ), x(t0) = x0, (13)

has a unique solution x(t, t0, x0, µ) satisfying

lim
µ→µ0

x(t, t0, x0, µ) = x(t, t0, x0, µ0), t ∈ [t0, T ]. (14)
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Proof: On any interval [t0, T ], the existence and uniqueness of the solution is provided in
Lemma 1. We first wish to show continuous dependence of solutions on µ. Let t ∈ [t0, T ]
and define, z(t, µ, µ0) = x(t, t0, x0, µ)− x(t, t0, x0, µ0), we have∣∣∣z(t, µ, µ0)

∣∣∣ =
∣∣∣x(t, t0, x0, µ)− x(t, t0, x0, µ0)

∣∣∣
≤

∫ t

t0

∣∣∣f(s, x(s, t0, x0, µ), µ)− f(s, x(s, t0, x0, µ0), µ0)
∣∣∣ ds

=

∫ t

t0

∣∣∣f(s, x(s, t0, x0, µ), µ)− f(s, x(s, t0, x0, µ0), µ)

+f(s, x(s, t0, x0, µ0), µ)− f(s, x(s, t0, x0, µ0), µ0)
∣∣∣ ds

≤
∫ t

t0

{∣∣∣f(s, x(s, t0, x0, µ), µ)− f(s, x(s, t0, x0, µ0), µ)
∣∣∣

+
∣∣∣f(s, x(s, t0, x0, µ0), µ)− f(s, x(s, t0, x0, µ0), µ0)

∣∣∣} ds

≤
∫ t

t0

C
∣∣∣x(s, t0, x0, µ)− x(s, t0, x0, µ0)

∣∣∣ ds

+

∫ t

t0

∣∣∣f(s, x(s, t0, x0, µ0), µ)− f(s, x(s, t0, x0, µ0), µ0)
∣∣∣ ds.

Let us define g(s, µ) by

g(s, µ) =
∣∣∣f(s, x(s, t0, x0, µ0), µ)− f(s, x(s, t0, x0, µ0), µ0)

∣∣∣
and note that g(s, µ) → 0 uniformly in s as µ → µ0 from the assumption on f in equation
(11). It follows ∣∣∣z(t, µ, µ0)

∣∣∣ ≤
∫ T

t0

g(s, µ)ds

+

∫ t

t0

C
∣∣∣x(s, t0, x0, µ)− x(s, t0, x0, µ0)

∣∣∣ ds. (15)

When we apply Gronwall’s inequality and take the limit as µ → µ0 on both sides of (15), we
obtain

lim
µ→µ0

∣∣∣z(t, µ, µ0)
∣∣∣ ≤ lim

µ→µ0

( ∫ T

t0

g(s, µ)ds
)
eC(t−t0)

= 0,

and thus
lim

µ→µ0

x(t, t0, x0, µ) = x(t, t0, x0, µ0).

This completes the proof.
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Lemma 3 (Mean Value Theorem) Let f ∈ C[R+ ×X ×M, X] and

(i) If fx(t, x, µ) exits and is continuous for x ∈ X, then for x1, x2 ∈ X, µ ∈M, t ≥ 0,

f(t, x1, µ)− f(t, x2, µ) =

∫ 1

0

fx(t, sx1 + (1− s)x2, µ)(x1 − x2)ds.

(ii) If fµ(t, x, µ) exists and is continuous for µ ∈M, then for µ1, µ2 ∈M, x ∈ X, t ≥ 0,

f(t, x, µ1)− f(t, x, µ2) =

∫ 1

0

fµ(t, x, sµ1 + (1− s)µ2)(µ1 − µ2)ds.

Proof: First we consider (i). Let

G(s) = f(t, sx1 + (1− s)x2, µ), 0 < s ≤ 1,

and using the chain rule of Frechet derivatives, we have

G′(s) = fx(t, sx1 + (1− s)x2, µ)(x1 − x2).

Note that G(s) is well defined since X is a convex space. Integrating G′(s) for s ∈ (0, 1], we
obtain G(1)−G(0) which is equivalent to f(t, x1, µ)− f(t, x2, µ) and hence we have (i).

The proof of (ii) is very similar to the proof of (i) and hence we omit it.

Theorem 1 Suppose the function f(t, x, µ) of (1) has a continuous Frechet derivative fx(t, x, µ)
with respect to x and fµ(t, x, µ) with respect to µ with∣∣∣fx(t, x, µ)

∣∣∣ ≤ M0 and
∣∣∣fµ(t, x, µ)

∣∣∣ ≤ M1

for some constant M0 > 0 and M1 > 0. Then the Frechet derivative y(t) = ∂
∂µ

x(t, t0, x0, µ)

exists with y(t) in B(M, X) and satisfying the equation

ẏ(t) = fx(t, x(t, t0, x0, µ), µ)y(t) + fµ(t, x(t, t0, x0, µ), µ), t ≥ t0

y(t0) = 0. (16)

Proof: Since fx ∈ C[R+×X×M, B(X, X)], fµ ∈ C[R+×X×M, B(M, X)], applying Lemma
1, we find that the differential system (16) has a unique solution which we denote by y(t). For
a fixed µ ∈M, µ+h ∈M, and t ∈ [t0, T ], we let m(t, µ, h) = x(t, t0, x0, µ+h)−x(t, t0, x0, µ).
Then

m(t, µ, h) =

∫ t

t0

{f(s, x(s, t0, x0, µ + h), µ + h)− f(s, x(s, t0, x0, µ), µ)}ds.
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From the Frechet differentiability of f with respect to x ∈ X and µ ∈M, we have

f(t, x(t, t0, x0, µ + h), µ + h)− f(t, x(t, t0, x0, µ), µ)

= f(t, x(t, t0, x0, µ + h), µ + h)− f(t, x(t, t0, x0, µ + h), µ)

+f(t, x(t, t0, x0, µ + h), µ)− f(t, x(t, t0, x0, µ), µ)

= fµ(t, x(t, t0, x0, µ + h), µ)(µ + h− µ) + w1(h)

+fx(t, x(t, t0, x0, µ), µ)[x(t, t0, x0, µ + h)− x(t, t0, x0, µ)] + w2(m(t, µ, h)),

where
|w1(h)|
|h|

→ 0

and
|w2(m(t, µ, h))|
|m(t, µ, h)|

→ 0

as |h|, |m(t, µ, h)| → 0, respectively. Consequently, we define g1(t, h) and g2(t, h) by

g1(t, h) =
|w1(h)|
|h|

, (17)

g2(t, h) =
|w2(m(t, µ, h))|
|m(t, µ, h)|

, (18)

and hence g1(t, h) and g2(t, h) → 0 uniformly in t as |h| → 0.
Now for y(t) satisfying system (16), we consider∣∣∣m(t, µ, h)− y(t)h

∣∣∣∣∣∣h∣∣∣ =
1∣∣∣h∣∣∣

∣∣∣ ∫ t

t0

{
fµ(s, x(s, t0, x0, µ + h), µ)h + w1(h)

+fx(s, x(s, t0, x0, µ), µ)
[
m(s, µ, h)

]
+ w2(m(s, µ, h))

−fx(s, x(s, t0, x0, µ), µ)y(s)h− fµ(s, x(s, t0, x0, µ), µ)h
}

ds
∣∣∣
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≤
∫ t

t0

|fµ(s, x(s, t0, x0, µ + h), µ)− fµ(s, x(s, t0, x0, µ), µ)| |h|
|h|

ds

+

∫ t

t0

∣∣∣fx(s, x(s, t0, x0, µ), µ)
∣∣∣ |m(s, µ, h)− y(s)h|

|h|
ds

+

∫ t

t0

|w2(m(s, µ, h))|
|h|

ds +

∫ t

t0

|w1(h)|
|h|

ds.

Next we want to show
|w2(m(t, µ, h))|

|h|
≤ K

|w2(m(t, µ, h))|
|m(t, µ, h)|

for some constant K > 0. Hence, we want to look at

|m(t, µ, h)| =
∣∣∣ ∫ t

t0

{
fµ(s, x(s, t0, x0, µ + h), µ)h + w1(h)

+fx(s, x(s, t0, x0, µ), µ)[m(s, µ, h)] + w2(m(s, µ, h))
}

ds
∣∣∣

≤
∫ t

t0

{∣∣∣fµ(s, x(s, t0, x0, µ + h), µ)
∣∣∣∣∣∣h∣∣∣ +

∣∣∣w1(h)
∣∣∣

+
∣∣∣fx(s, x(s, t0, x0, µ), µ)

∣∣∣∣∣∣m(s, µ, h)
∣∣∣ +

∣∣∣w2(m(s, µ, h))
∣∣∣}ds.

From equations (17) and (18), we obtain∣∣∣w1(h)
∣∣∣ = g1(t, h)

∣∣∣h∣∣∣,∣∣∣w2(m(t, µ, h))
∣∣∣ = g2(t, h)

∣∣∣m(t, µ, h)
∣∣∣.

Furthermore, with the assumptions that
∣∣∣fx

∣∣∣ ≤ M0,
∣∣∣fµ

∣∣∣ ≤ M1, the function |m(t, µ, h)| is

bounded by∫ t

t0

{
M1

∣∣∣h∣∣∣ + g1(s, h)
∣∣∣h∣∣∣ + M0

∣∣∣m(s, µ, h)
∣∣∣ + g2(s, h)

∣∣∣m(s, µ, h)
∣∣∣}ds

≤
∫ T

t0

M1

∣∣∣h∣∣∣ + g1(s, h)
∣∣∣h∣∣∣ds +

∫ t

t0

(M0 + g2(s, h))
∣∣∣m(s, µ, h)

∣∣∣ds.

Again, applying Gronwall’s inequality, we obtain∣∣∣m(t, µ, h)
∣∣∣ ≤ K

∣∣∣h∣∣∣,
9



where K = (
∫ T

t0
{M1 + g1(s, h)}ds)e

∫ T
t0

M0+g2(s,h)ds
where g1(s, h) and g2(s, h) converge to 0

uniformly in s as |h| → 0. It follows

|w2(m(t, µ, h))|
|h|

≤ K
|w2(m(t, µ, h))|
|m(t, µ, h)|

.

Hence,

|m(t, µ, h)− y(t)h|
|h|

≤
∫ t

t0

|fµ(s, x(s, t0, x0, µ + h), µ)− fµ(s, x(s, t0, x0, µ), µ)| |h|
|h|

ds

+

∫ t

t0

M0
|m(s, µ, h)− y(s)h|

|h|
ds

+

∫ t

t0

K
|w2(m(s, µ, h))|
|m(s, µ, h)|

ds +

∫ t

t0

|w1(h)|
|h|

ds.

Since x(t, t0, x0, µ) is continuously dependent on µ from Lemma 2, we have

lim
|h|→0

∣∣∣fµ(t, x(t, t0, x0, µ + h), µ)− fµ(t, x(t, t0, x0, µ), µ)
∣∣∣ = 0,

which implies ∣∣∣fµ(t, x(t, t0, x0, µ + h), µ)− fµ(t, x(t, t0, x0, µ), µ)
∣∣∣ ≤ g3(t, h)

where g3(t, h) → 0 as |h| → 0. In addition, we apply the inequalities in equations (17) and
(18), and thus obtain

|m(t, µ, h)− y(t)h|
|h|

≤
∫ t

t0

M0
|m(s, µ, h)− y(s)h|

|h|
ds (19)

+

∫ T

t0

{g1(s, h) + Kg2(s, h) + g3(s, h)} ds.

Hence, using Gronwall’s inequality and taking the limit of (19) as |h| → 0, we have

lim
|h|→0

|m(t, µ, h)− y(t)h|
|h|

≤ lim
|h|→0

{∫ T

t0

{g1(s, h) + Kg2(s, h) + g3(s, h)} ds
}

eM0(t−t0)

= 0, (20)

which completes the proof.
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Remark: Although in this manuscript we consider, for ease in exposition, a strong as-
sumption of global Lipschitz on f , we can also readily establish similar results for the case
of weaker assumptions involving local Lipschitz conditions on f plus domination of f by an
affine function. Details of this approach can be found in Lemma 2.1 in [2]. Many systems
of interest in applications (including the example of [4], [5] described below) satisfy these
weaker assumptions.

3 A Special Case

In this section, we consider a special case of equation (1) where the parameter of interest
is an element in a convex subset of M. This allows us to extend the results given in [3]
to provide sensitivity equations for probability density dependent systems. First, we define
p ∈ M = L2(Q) and x ∈ X where Q = [−r, 0] and X = R4 × L2(−r, 0; R4). Then for
x(t) = (v(t), vt) we consider a system (1) with the right side of the form

f(t, x(t), p) = F (t, v(t)) +

∫
Q

v(t + τ)p(τ)dτ, (21)

where vt denotes the function τ → v(t + τ), τ ∈ [−r, 0]. For each x = (η, φ) ∈ X we define
g(x, p) =

∫
Q

φ(t + τ)p(τ) dτ . Then g(x, p) is Frechet differentiable on M = L2(Q) and we

have g′(x̂, p̂)p = g(x̂, p). Due to our particular interest, we restrict the parameter space to
the sets of probability density functions in L2(Q) and define

Mc = {p ∈ L2(Q) | p ≥ 0 and

∫
Q

p(τ) dτ = 1}.

Since Mc is a convex subset of M = L2(Q), we may differentiate g with respect to p using
the directional derivative for p, q ∈Mc. We find that g is differentiable with respect to p in
the direction of (q − p) with

g′(x̂, p)(q − p) = g(x̂, q − p). (22)

Obviously, equation (22) implies the directional derivative of g is the Frechet derivative on
M restricted to q−p where p, q ∈Mc. It follows that for the equation (1) with the right side
defined in (21) for p ∈ Mc, the corresponding sensitivity function satisfies the sensitivity
equation (16) of Section 2.

4 Approximations and Numerical Results

To apply the theoretical results of Section 2 to a specific system of interest, we first derive and
approximate the sensitivity equation of an HIV model that has the structure of the special

11



case presented in Section 3. We consider an HIV model of distributed delay differential
equations derived and investigated by Banks, et al., in [4], [5]

V̇ (t) = −cV (t) + nCC(t)− αV (t)T (t) + ηA

∫ 0

−r

A(t + τ)p1(τ)dτ

Ȧ(t) = (rv − δA)A(t)− δY (t)A(t) + αV (t)T (t)− γ

∫ 0

−r

A(t + τ)p2(τ)dτ

Ċ(t) = (rv − δC)C(t)− δY (t)C(t) + γ

∫ 0

−r

A(t + τ)p2(τ)dτ (23)

Ṫ (t) = (ru − δu)T (t)− δY (t)T (t)− αV (t)T (t) + S, for t ≥ 0,

where Y (t) = A(t) + C(t) + T (t). All the parameters and compartments are defined and
described in Table 1 and Table 2 below. Here p1 and p2 are probability density functions
for the time delay τ1 and τ2, respectively, where τ1 < 0 represents the time delay between
acute infection and viral production and τ2 < 0 denotes the delay between acute infectivity
and chronic infectivity such that −r < τ1 + τ2 < 0. We employ v = [V, A, C, T ]T and x(t) =
(v(t), vt) ∈ X = R4 × L2(−r, 0; R4). We let the parameter space M = L2(−r, 0)× L2(−r, 0)

and Mc = {(p1, p2) ∈ M| p1, p2 ≥ 0 and
∫ 0

−r
p1(τ)dτ =

∫ 0

−r
p2(τ)dτ = 1}. Then the HIV

system (23) can be rewritten as an abstract Cauchy problem

ẋ(t) = Ax(t) + f2(t), t ≥ 0

x(0) = x0, (24)

where r > 0 is finite, f2(t) = ([0, 0, 0, S]T , 0) ∈ X, and x0 = (η, φ) ∈ X. Here A is a nonlinear

operator such that A : D(A) ⊂ X → X and A(η, φ) =
(
L(η, φ)+f1(η), d

dτ
φ
)

where D(A) =

{(η, φ) ∈ X |φ ∈ H1(−r, 0; R4) and η = φ(0)}. Furthermore, for (η, φ) ∈ R4 ×L2(−r, 0; R4),

L(η, φ) =


−c 0 nC 0
0 rv − δA 0 0
0 0 rv − δC 0
0 0 0 ru − δu

 η + nA[δ(1,2)](4,4)

∫ 0

−r

φ(τ)p1(τ)dτ

+γ([δ(3,2)](4,4) − [δ(2,2)](4,4))

∫ 0

−r

φ(τ)p2(τ)dτ,

f1(η) =


−αη1η4

−δ(
∑4

i=2 ηi)η2 + αη1η4

−δ(
∑4

i=2 ηi)η3

−δ(
∑4

i=2 ηi)η4 − αη1η4

 ,

where [δ(i,j)](4,4) is a 4× 4 matrix with a one in the (i, j)th component and zeros everywhere
else. In [4], [5] the mass action product nonlinearities in f1 are replaced by saturating
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nonlinear functions – see the definition of f 1 in [4], [5]. The resulting model then satisfies
the required conditions of the theory in Section 2.

We consider here the sensitivity of the system (23) with respect to p1. Similar ideas and
calculations can be pursued for sensitivity with respect to p2 or to the pair (p1, p2) ∈ Mc.
For y = [ ∂V

∂p1
, ∂A

∂p1
, ∂C

∂p1
, ∂T

∂p1
]T , we find that the sensitivity equation of the HIV system (23) with

respect to p1 is the solution of

ẏ(t; x, p1) = Jv(v(t))y(t; x, p1) + g1(t; vt, p1), t ≥ 0

y(0) = 0, (25)

where x(t) = (v(t), vt),

Jv =


−c− αT 0 nC −αV

αT rv − δA − δ(2A + C + T ) −δA −δA + αV
0 −δC rv − δC − δ(A + 2C + T ) −δC

−αT −δT −δT ru − δu − δ(A + C + 2T )− αV


and

g1(t; vt, p1) =


nA

∫ 0
−r A(t + τ)p1(τ)dτ

0
0
0

 .

In order to solve the sensitivity equation, we obviously need the solution x of system (24). Since
we cannot compute the exact solution x of (24), we approximate x by xN using the linear spline
approximation scheme for delay differential equations developed by Banks and Kappel in [8]. We
employ {XN , PN , AN} to be the approximating scheme where XN is the spline subspace of X,
PN is the orthogonal projection of X onto XN , and AN is the approximating operator of A such
that AN = PNAPN . Thus, the approximation to system (24) is described by

ẋN (t) = ANxN (t) + PNf2(t), t ≥ 0
xN (0) = PNx0. (26)

As shown in [5], [8], the approximating scheme, {XN , PN , AN}, yields solutions such that xN (t) →
x(t) uniformly in t on a finite interval, as N →∞ and fixed (p1, p2) ∈ Mc. In order to apply the
linear spline approximation scheme, we fix the basis for a subspace XN

1 of XN to be the piece-
wise linear splines. Before we construct the splines, we partition [−r, 0] by tNi = −i(r/N) for
i = 0, 1, ..., N and then define the splines β̂N = (βN (0), βN ), where βN = (eN

0 , eN
1 , ..., eN

N )
⊗

In.
Here In denotes the n× n matrix and the piecewise linear eN

i ’s are defined by

eN
i (tNj ) = δij for i, j = 0, 1, .., N.

When we restrict AN to XN
1 , we have a matrix representation of AN , which we denote as AN

1 .
Furthermore, we define wN (t) and FN (t) to be xN (t) = β̂NwN (t) and PNf2(t) = β̂NFN (t),
respectively. It follows that solving for xN (t) in system (26) is equivalent to solving for wN (t) in
the nonlinear ordinary differential equation

ẇN (t) = AN
1 wN (t) + FN (t), t ≥ 0

wN (0) = wN
0 , (27)
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where β̂NwN
0 = PNx0. When wN are thus obtained, Theorem 3.2 in [8] combined with the results

from [2] guarantees that the product β̂NwN converge uniformly in t on a finite interval to xN , the
solution of system (26). We have only briefly summarized the linear spline approximation scheme
here; for more details on the proof of the results and how to compute AN

1 , PNx0, and PNf2, see
[5] and [8].

When we apply the linear spline approximation scheme to our HIV system, we establish a 4(N +
1) dimensional nonlinear ordinary differential equation system. The solution of the constructed
system, wN , is for the generalized Fourier coefficients when we expand the solution x in terms of
(N + 1) piecewise linear spline basis elements. For our simulations, we consider x0 = (v(0), v(τ))
where

v(0) = [0, 1.5× 106, 0, 1.35× 106]T ,

and v(τ) = 0 for τ ∈ [−r, 0). The values of the parameters we use are listed in Table 1. The
functions p1 and p2 are modified Gaussian probability density functions with means τ1 = −22.8
and τ2 = −26, respectively, each with variance 1. Due to the nature of our problem where we only
consider p1 and p2 for τ ∈ [−r, 0], we actually use normalized truncated Gaussian density functions
in our computations. That is, we have

pi(τ) =
1

σ
√

(2π)
e−

(τ−τi)
2

2σ2 for i = 1, 2, (28)

where τ1 = −22.8, τ2 = −26, and σ = 1. Further, we normalize the pi so that
∫ 0
−r pi(τ)dτ = 1; i.e.,

we divide pi by d where d =
∫ 0
−r pi(τ)dτ . Applying the Banks/Kappel linear spline approximation

scheme and the corresponding theoretical arguments to the system described above with fixed p1

and p2, one can obtain that vN = [V N , AN , CN , TN ]T converges as N → ∞. This convergence is
illustrated computationally in Figure 1 for the fixed p1 and p2 given above. We note that these
solutions require quadratures on the integral terms involving the p1 and p2. We used the Runge-
Kutta method in MATLAB’s ODE23 for solution of our approximate ordinary differential equations
(27) and (29) below.

Since we only have xN , the approximations of x, we must approximate the solutions of the
sensitivity equation (25). Moreover, it is of interest to further approximate the densities p1 in the
functionals g1 with finite dimensional parameterized densities pM

1 . (This type of approach is useful
in inverse problems when one must estimate the densities.) In this case, we desire convergence of
solutions yN,M , the solution of (25) with approximations xN and pM

1 in place of x and p1, to y.
To illustrate with an example, we define pM

1 (τ) =
∑M

i=1 aM
i lMi (τ), such that pM

1 → p1, where the
lMi ’s are the usual piecewise linear splines (see for example [9]). We enforce the probability density
constraints pM

1 ≥ 0 and
∫ 0
−r

∑M
i=1 aM

i lMi (τ)dτ = 1. It is obvious that when xN → x and pM
1 → p1,

we have Jv(vN ) → Jv(v) and g1(t; vN
t , pM

1 ) → g1(t; vt, p1) as N,M →∞. Therefore, the sensitivity
function y can be approximated by the solution of

ẏN,M (t) = Jv(vN (t))yN,M (t) + gN,M
1 (t) t ≥ 0,

yN,M (0) = 0, (29)
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Parameters Values Description
c 0.12 infectious viral clearance rate

nA 0.1194 infectious viral production rate for acutely infected cells
nC 1.6644× 10−6 infectious viral production rate for chronically infected cells
γ 8.7625× 10−4 rate at which acutely infected cells become chronically infected
rv 0.035 birth-rate for virus infected cells
ru 0.035 birth-rate for uninfected cells
δA 0.0775 death-rate for acutely infected cells
δC 0.0257 death-rate for chronically infected cells
δu 0.0160 death-rate for uninfected cells
δ 5.4495× 10−13 density dependent overall cell death-rate
α 1.3359× 10−6 probability of infection
S 0.0 constant rate of target cell replacement

Table 1: Definition and values of in vitro model parameters

Notations Description
V infectious viral population
A acutely infected cells
C chronically infected cells
T uninfected or target cells
Y total cell population (infected and uninfected)

Table 2: Definition of in vitro model compartments

where

gN,M
1 (t) =


nA

∫ 0
−r AN (t + τ)pM

1 (τ) dτ

0
0
0

 .

Using standard arguments with the convergence xN → x, pM
1 → p1, one can readily establish that

yN,M → y as N,M → ∞. Similar convergence arguments can be made for the solutions xN,M of
the system (26) with the pi’s approximated by pM

i ’s. We note that this is precisely the type of
convergence results required to establish method stability in inverse problems see [9], [15].

To illustrate our statement on convergence of yN,M , we first fix N = 32 and solve equation (29)
for different values of M . As graphed in Figure 2, we have yN,M converges for a fixed N = 32 as
M → ∞. Next we fix M = 256 and solve equation (29) for different values of N . We depict the
solution yN,M for M = 256 and different values of N in Figure 3 where it is evident that yN,M

converges for M = 256 and N →∞.
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Figure 1: Simulations of vN where the thick solid line corresponds to N = 16, - - - represents
N = 32, -.-.-. represents N = 64, ..... represents N = 128, and the thin solid line is for
N = 256
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5 Concluding Remarks

In this paper we have given a general theoretical sensitivity framework for abstract systems in a
Banach space with dynamics that depend on vector (Banach) space parameters. We then show that
this includes a sensitivity theory for systems that depend on probability densities wherein a natural
space for the parameters is M = L2. We also demonstrated how one could treat theoretically and
computationally examples with distributed delays in the context of this framework. The example we
presented illustrates the connection between the efforts here and those in [3] where parameterized
distributions are considered. In some sense, one can consider our present efforts as an infinite
dimensional extension of standard sensitivity theories for finite dimensional vector parameters.

Our current theory readily accommodates measures that are absolutely continuous with respect
to Lebesgue measure (i.e., measures with a probability density). An important generalization of our
efforts would allow treatment of measures with an absolutely continuous component and a saltus
component of the form

P (τ) =
k∑

i=1

pi∆τi(τ) +
∫ τ

−r
p(ξ)dξ,

or

dP (τ) =
k∑

i=1

piδτi(τ)dτ + p(τ)dτ,

where ∆τ is the Dirac measure with atom or mass at τ . We are currently pursuing such a theory
in which the parameter space is no longer a Banach space, but rather a metric space that is based
on a combination of the Prohorov metric topology (see [6]) and the L2 topology (or possibly the
weak L2 topology for compatibility with the Prohorov metric-see [14]).

Acknowledgements

This research was supported in part by the US Air Force Office of Scientific Research under grant
AFOSR FA9550-04-1-0220, in part by the Joint DMS/NIGMS Initiative to Support Research in
the Area of Mathematical Biology under grant 1R01GM67299-01, and in part by the National Sci-
ence Foundation under grant DMS-0112069 to the Statistical and Applied Mathematical Sciences
Institute (SAMSI).

References

[1] H. M. Adelman and R.T. Haftka, Sensitivity analysis of discrete structural systems,
A.I.A.A. Journal, 24 (1986), 823–832.

[2] H.T. Banks, Approximation of nonlinear functional differential equation control systems, J.
Optimization Theory and Applications, 29 (1979), 383–408.

19



[3] H.T. Banks and D. M. Bortz, A parameter sensitivity methodology in the context of HIV
delay equation models, CRSC-TR02-24, NCSU, August, 2002; J. Mathematical Biology, to
appear.

[4] H.T. Banks and D. M. Bortz, Inverse problems for a class of measure dependent dynam-
ical systems, CRSC-TR04-33, NCSU, September, 2004; J. Inverse and Ill-posed Problems, to
appear.

[5] H.T. Banks, D.M. Bortz and S.E. Holte, Incorporation of variability into the mathe-
matical modeling of viral delays in HIV infection dynamics, Mathematical Biosciences, 183
(2003), 63–91.

[6] H.T. Banks, D.M. Bortz, G.A. Pinter and L.K. Potter, Modeling and imaging tech-
niques with potential for application in bioterrorism, Chapter 6 in Bioterrorism: Mathematical
Modeling Applications in Homeland Security, (H.T. Banks and C. Castillo-Chavez, eds.), Fron-
tiers in Applied Mathematics FR28, SIAM, Philadelphia, 2003, pp. 129–154.

[7] H.T. Banks and N.L. Gibson, Well-posedness in Maxwell systems with distributions of
polarization relaxation parameters, CRSC-TR04-01, NCSU, January, 2004; Applied Math.
Letters, to appear.

[8] H.T. Banks and F. Kappel, Spline approximations for functional differential equations, J.
Differential Equations, 34 (1979), 496–522.

[9] H.T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems,
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